skip to main content


Search for: All records

Creators/Authors contains: "Jeffery, Nicole"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We use a modern Earth system model to approximate the relative importance of ice versus temperature on Arctic marine ecosystem dynamics. We show that while the model adequately simulates ice volume, water temperature, air‐sea CO2flux, and annual primary production in the Arctic, itunderestimates upper water column nitrate across the region. This nitrate bias is likely responsible for the apparent underestimation of ice algae production. Despite this shortcoming, the model appears to be a useful tool for exploring the impacts of environmental change on phytoplankton production and carbon dynamics over the Arctic Ocean. Our experiments indicate that under a warmer climate scenario, the percentage of ocean warming that could be apportioned to a reduction in ice area ranged from 11% to 100%, while decreasing ice area could account for 22–100% of the increase in annual ocean primary production. The change to CO2air‐sea flux in response to ice and temperature changes averaged an Arctic‐wide 5.5 Tg C yr−1(3.5%) increase, into the ocean. This increased carbon sink may be short‐lived, as ice cover continues to decrease and the ocean warms. The change in carbon fixation from phytoplankton in response to increased temperatures and reduced ice was generally more than a magnitude larger than the changes to CO2flux, highlighting the importance of fully considering changes to the marine ecosystem when assessing Arctic carbon cycle dynamics. Our work demonstrates the importance of ice dynamics in controlling ocean warming and production and thus the need for well‐behaved ice and BGC models within Earth system models if we hope to accurately predict Arctic changes.

     
    more » « less
  2. Abstract

    Recent observations suggest that substantial phytoplankton blooms occur under sea ice on Arctic continental shelves during June and July. This is opposed to the traditional view that no significant biomass is produced in sea‐ice covered waters. However, no observational estimates are available on the Arctic‐wide primary production beneath sea ice. Here, using a fully coupled Arctic system model, we estimate that 63%/41% of the total primary production in the central Arctic occurs in waters covered by sea ice that is ≥50%/≥85% concentration. The total primary production there is increasing at a rate of 5.2% per decade during 1980–2018. Increased light transmission, due to the removal of sea ice, more extensive melt ponds, and thinner sea ice, is implicated as the main cause of increasing trends in primary production.

     
    more » « less
  3. Abstract

    This work documents version two of the Department of Energy's Energy Exascale Earth System Model (E3SM). E3SMv2 is a significant evolution from its predecessor E3SMv1, resulting in a model that is nearly twice as fast and with a simulated climate that is improved in many metrics. We describe the physical climate model in its lower horizontal resolution configuration consisting of 110 km atmosphere, 165 km land, 0.5° river routing model, and an ocean and sea ice with mesh spacing varying between 60 km in the mid‐latitudes and 30 km at the equator and poles. The model performance is evaluated with Coupled Model Intercomparison Project Phase 6 Diagnosis, Evaluation, and Characterization of Klima simulations augmented with historical simulations as well as simulations to evaluate impacts of different forcing agents. The simulated climate has many realistic features of the climate system, with notable improvements in clouds and precipitation compared to E3SMv1. E3SMv1 suffered from an excessively high equilibrium climate sensitivity (ECS) of 5.3 K. In E3SMv2, ECS is reduced to 4.0 K which is now within the plausible range based on a recent World Climate Research Program assessment. However, a number of important biases remain including a weak Atlantic Meridional Overturning Circulation, deficiencies in the characteristics and spectral distribution of tropical atmospheric variability, and a significant underestimation of the observed warming in the second half of the historical period. An analysis of single‐forcing simulations indicates that correcting the historical temperature bias would require a substantial reduction in the magnitude of the aerosol‐related forcing.

     
    more » « less